McGraw-Hill Ryerson

Pre-Calculus

Authors

Bruce McAskill, B.Sc., B.Ed., M.Ed., Ph.D. Mathematics Consultant, Victoria, British Columbia

Wayne Watt, B.Sc., B.Ed., M.Ed. Mathematics Consultant, Winnipeg, Manitoba

Eric Balzarini, B.Sc., B.Ed., M.Ed. School District 35 (Langley), British Columbia

Blaise Johnson, B.Sc., B.Ed. School District 45 (West Vancouver), British Columbia

Ron Kennedy, B.Ed. Mathematics Consultant, Edmonton, Alberta

Terry Melnyk, B.Ed. Edmonton Public Schools, Alberta

Chris Zarski, B.Ed., M.Ed. Wetaskiwin Regional Division No. 11, Alberta

Contributing Author

Gail Poshtar, B.Ed. Calgary Roman Catholic Separate School District, Alberta

Senior Program Consultants

Bruce McAskill, B.Sc., B.Ed., M.Ed., Ph.D. Mathematics Consultant, Victoria, British Columbia

Wayne Watt, B.Sc., B.Ed., M.Ed. Mathematics Consultant, Winnipeg, Manitoba

Assessment Consultant

Chris Zarski, B.Ed., M.Ed. Wetaskiwin Regional Division No. 11, Alberta

Pedagogical Consultant

Scott Carlson, B.Ed., B. Sc. Golden Hills School Division No. 75, Alberta

Aboriginal Consultant

Chun Ong, B.A., B.Ed. Manitoba First Nations Education Resource Centre, Manitoba

Differentiated Instruction Consultant

Heather Granger Prairie South School Division No. 210, Saskatchewan

Gifted and Career Consultant

Rick Wunderlich School District 83 (North Okanagan/ Shuswap), British Columbia

Math Processes Consultant

Reg Fogarty School District 83 (North Okanagan/ Shuswap), British Columbia

Technology Consultants

Ron Kennedy Mathematics Consultant, Edmonton, Alberta

Ron Coleborn School District 41 (Burnaby), British Columbia

Toronto Montréal Boston Burr Ridge, IL Dubuque, IA Madison, WI New York San Francisco St. Louis Bangkok Bogotá Caracas Kuala Lumpur Lisbon London Madrid Mexico City Milan New Delhi Santiago Seoul Singapore Sydney Taipei

Advisors

John Agnew, School District 63 (Saanich), British Columbia

Len Bonifacio, Edmonton Catholic Separate School District No. 7, Alberta

Katharine Borgen, School District 39 (Vancouver) and University of British Columbia, British Columbia

Renée Jackson, University of Alberta, Alberta

Gerald Krabbe, Calgary Board of Education, Alberta

Gail Poshtar, Calgary Roman Catholic Separate School District, Alberta

Harold Wardrop, Brentwood College School, Mill Bay (Independent), British Columbia

Francophone Advisors

Mario Chaput, Pembina Trails School Division, Manitoba

Luc Lerminiaux, Regina School Division No. 4, Saskatchewan

Inuit Advisor

Christine Purse, Mathematics Consultant, British Columbia

Métis Advisor

Greg King, Northern Lights School Division No. 69, Alberta

Technical Advisor

Darren Kuropatwa, Winnipeg School Division #1, Manitoba

The **McGraw·Hill** Companies

COPIES OF THIS BOOK MAY BE OBTAINED BY CONTACTING:

McGraw-Hill Ryerson Ltd.

WEB SITE: http://www.mcgrawhill.ca

E-MAIL: orders@mcgrawhill.ca

TOLL-FREE FAX: 1-800-463-5885

TOLL-FREE CALL: 1-800-565-5758

OR BY MAILING YOUR ORDER TO:

McGraw-Hill Ryerson Order Department 300 Water Street Whitby, ON L1N 9B6

Please quote the ISBN and title when placing your order.

McGraw-Hill Ryerson Pre-Calculus 12

Copyright © 2012, McGraw-Hill Ryerson Limited, a Subsidiary of The McGraw-Hill Companies. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, or stored in a data base or retrieval system, without the prior written permission of McGraw-Hill Ryerson Limited, or, in the case of photocopying or other reprographic copying, a licence from The Canadian Copyright Licensing Agency (Access Copyright). For an Access Copyright licence, visit *www.accesscopyright.ca* or call toll free to 1-800-893-5777.

ISBN-13: 978-0-07-073872-0 ISBN-10: 0-07-073872-6

http://www.mcgrawhill.ca

2 3 4 5 6 7 8 9 10 TCP 1 9 8 7 6 5 4 3 2 1

Printed and bound in Canada

Care has been taken to trace ownership of copyright material contained in this text. The publishers will gladly accept any information that will enable them to rectify any reference or credit in subsequent printings.

Microsoft® Excel is either a registered trademark or trademarks of Microsoft Corporation in the United States and/or other countries.

TI-84[™] and TI-Nspire[™] are registered trademarks of Texas Instruments.

The Geometer's Sketchpad®, Key Curriculum Press, 1150 65th Street, Emeryville, CA 94608, 1-800-995-MATH.

VICE-PRESIDENT, EDITORIAL: Beverlev Buxton MATHEMATICS PUBLISHER: Jean Ford PROJECT MANAGER: Janice Dyer DEVELOPMENTAL EDITORS: Maggie Cheverie, Jackie Lacoursiere, Jodi Rauch MANAGER, EDITORIAL SERVICES: Crystal Shortt SUPERVISING EDITOR: Jaime Smith COPY EDITOR: Julie Cochrane PHOTO RESEARCH & PERMISSIONS: Linda Tanaka EDITORIAL ASSISTANT: Erin Hartley EDITORIAL COORDINATION: Jennifer Keay MANAGER, PRODUCTION SERVICES: Yolanda Pigden PRODUCTION COORDINATOR: Jennifer Hall INDEXER: Belle Wong INTERIOR DESIGN: Pronk & Associates COVER DESIGN: Michelle Losier ART DIRECTION: Tom Dart, First Folio Resource Group Inc. ELECTRONIC PAGE MAKE-UP: Tom Dart, Kim Hutchinson, First Folio Resource Group Inc. COVER IMAGE: Courtesy of Ocean/Corbis

Acknowledgements

There are many students, teachers, and administrators who the publisher, authors, and consultants of *Pre-Calculus 12* wish to thank for their thoughtful comments and creative suggestions about what would work best in their classrooms. Their input and assistance have been invaluable in making sure that the Student Resource and its related Teacher's Resource meet the needs of students and teachers who work within the Western and Northern Canadian Protocol Common Curriculum Framework.

Reviewers

Kristi Allen Wetaskiwin Regional Public Schools Alberta

Karen Bedard School District 22 (Vernon) British Columbia

Robert Burzminski Medicine Hat Catholic Board of Education Alberta

Tracy Connell School District 57 (Prince George) British Columbia

Janis Crighton Lethbridge School District No. 51 Alberta

Cynthia L. Danyluk Light of Christ Catholic School Division No. 16 Saskatchewan

Kelvin Dueck School District 42 (Maple Ridge/Pitt Meadows) British Columbia

Pat Forsyth Elk Island Public Schools Alberta

Barbara Gajdos Calgary Catholic School District Alberta

Murray D. Henry Prince Albert Catholic School Board No. 6 Saskatchewan

Christopher Hunter Curriculum and Instructional Services Centre British Columbia

Jane Koleba School District 61 (Greater Victoria) British Columbia **R. Paul Ledet** School District 63 (Saanich) British Columbia

Amos Lee School District 41 (Burnaby) British Columbia

Jay Lorenzen Horizon School District No. 205 Saskatchewan

Deanna Matthews Edmonton Public Schools Alberta

Dick McDougall Calgary Catholic School District Alberta

Yasuko Nitta School District 38 (Richmond) British Columbia

Catherine Ramsay River East Transcona School Division Manitoba

Dixie Sillito Prairie Rose School Division No. 8 Alberta

Jill Taylor Fort McMurray Public School District Alberta

John J. Verhagen Livingstone Range School Division No. 68 Alberta

Jimmy Wu School District 36 (Surrey) British Columbia

Contents

A Tour of Your Textbook.....vii

Unit 1	Transformations and	
Functi	ons2	

Chap	oter 1 Function Transformations	4
1.1	Horizontal and Vertical Translations	6
1.2	Reflections and Stretches	16
1.3	Combining Transformations	
1.4	Inverse of a Relation	
Chap	ter 1 Review	
Chap	ter 1 Practice Test	

Chapter 2 Radical Functions 60

2.1	Radical Functions and Transformations	62
2.2	Square Root of a Function	78
2.3	Solving Radical Equations Graphically	90
Chap	ter 2 Review	99
Chap	ter 2 Practice Test	102

Chapter 3 Polynomial Functions......104

Cun	nulative Review, Chapters 1-3	158
Uni	t 1 Project Wrap-Up	157
Chap	oter 3 Practice Test	155
Chap	oter 3 Review	153
3.4	Equations and Graphs of Polynomial Functions	136
3.3	The Factor Theorem	126
3.2	The Remainder Theorem	118
3.1	Characteristics of Polynomial Functions	106

Unit	1	Test	 160

Uni	t 2 Trigonometry 1	62
Chap Unit	pter 4 Trigonometry and the	64
4.1	Angles and Angle Measure	66
4.2	The Unit Circle 1	80
4.3	Trigonometric Ratios 1	91
4.4	Introduction to Trigonometric Equations2	206
Chap	oter 4 Review2	215
Chap	oter 4 Practice Test	218
Chap Grap	pter 5 Trigonometric Functions and ohs	220
5.1	Graphing Sine and Cosine Functions	222
5.2	Transformations of Sinusoidal Functions2	238
5.3	The Tangent Function	256
5.4	Equations and Graphs of Trigonometric Functions2	266
Chap	oter 5 Review2	282
Chap	oter 5 Practice Test	286
Chap	pter 6 Trigonometric Identities	288
6.1	Reciprocal, Quotient, and Pythagorean Identities	290
6.2	Sum, Difference, and Double-Angle Identities	299
6.3	Proving Identities	309
6.4	Solving Trigonometric Equations Using Identities	816
Chap	oter 6 Review	322
Chap	oter 6 Practice Test	324
Uni	t 2 Project Wrap-Up	325
Cun	nulative Review, Chapters 4-6 3	326
Uni	t 2 Test	328

	·	
Chap	oter 7 Exponential Functions	332
7.1	Characteristics of Exponential Functions	334
7.2	Transformations of Exponential Functions	346
7.3	Solving Exponential Equations	358
Chap	oter 7 Review	366
Chap	oter 7 Practice Test	368
Chap	oter 8 Logarithmic Functions	370
8.1	Understanding Logarithms	372
8.2	Transformations of Logarithmic Functions	383
8.3	Laws of Logarithms	392
8.4	Logarithmic and Exponential Equations	404
Chap	oter 8 Review	416
Chap	oter 8 Practice Test	419
Uni	t 3 Project Wrap-Up	421
Cun	nulative Review, Chapters 7-8.	422
Uni	t 3 Test	424

Unit 4 Equations and Functions 426

Chap	oter 9 Rational Functions428
9.1	Exploring Rational Functions Using Transformations
9.2	Analysing Rational Functions
9.3	Connecting Graphs and Rational
	Equations
Chap	oter 9 Review468
Chap	oter 9 Practice Test
Char	ter 10 Evention Operations (172
Chap	oter 10 Function Operations
10.1	Sums and Differences of Functions
10.2	Products and Quotients of Functions 488
10.3	Composite Functions
Chap	oter 10 Review510
Chap	oter 10 Practice Test
Char and	oter 11 Permutations, Combinations, the Binomial Theorem

11.1 Permutations	516
11.2 Combinations	528
11.3 Binomial Theorem	537
Chapter 11 Review	546
Chapter 11 Practice Test	548

Unit 4 Project Wrap-Up...... 549

Cumulative Review, Chapters 9-11.. 550

Unit 4 Tes	t	552

Answers	554
Glossary	638
Index	643
Credits	646

A Tour of Your Textbook

Unit Opener

Each unit begins with a two-page spread. The first page of the **Unit Opener** introduces what you will learn in the unit. The **Unit Project** is introduced on the second page. Each Unit Project helps you connect the math in the unit to real life using experiences that may interest you.

Project Corner boxes throughout the chapters help you gather information for your project. Some **Project Corner** boxes include questions to help you to begin thinking about and discussing your project.

The **Unit Projects** in Units 1, 3, and 4 provide an opportunity for you to choose a single **Project Wrap-Up** at the end of the unit.

The **Unit Project** in Unit 2 is designed for you to complete in pieces, chapter by chapter, throughout the unit. At the end of the unit, a **Project Wrap-Up** allows you to consolidate your work in a meaningful presentation.

Chapter Opener

Each chapter begins with a two-page spread that introduces you to what you will learn in the chapter.

The opener includes information about a career that uses the skills covered in the chapter. A Web Link allows you to learn more about this career and how it involves the mathematics you are learning.

Visuals on the chapter opener spread show other ways the skills and concepts from the chapter are used in daily life.

Three-Part Lesson

Each numbered section is organized in a three-part lesson: Investigate, Link the Ideas, and Check Your Understanding.

Investigate

• The **Investigate** consists of short steps often accompanied by illustrations. It is designed to help you build your own understanding of the new concept.

• The **Reflect and Respond** questions help you to analyse and communicate what you are learning and draw conclusions.

Link the Ideas

- The explanations in this section help you connect the concepts explored in the **Investigate** to the **Examples**.
- The **Examples** and worked **Solutions** show how to use the concepts. The Examples include several tools to help you understand the work.
 - Words in green font help you think through the steps.
 - Different methods of solving the same problem are sometimes shown. One method may make more sense to you than the others. Or, you may develop another method that means more to you.

Example 4	
Determine Exact Trigonometric Makers for Andre	Method 2: Use a Quotient Identity with Sine and Co. 1
Determine the event value for	tan 105" = <u>sin 105</u> "
a) sin .T.	$\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$
12 b) lan 105	cox (60" + 45") Use sum liferables with Vecial angles, could
Solution	$= \frac{\sin 60^{\circ} \cos 45^{\circ} + \cos 60^{\circ} \sin 45^{\circ}}{\cos 60^{\circ} \cos 45^{\circ} - \sin 60^{\circ} \sin 45^{\circ}} \xrightarrow{\text{you use a difference of}} \operatorname{angles (dentity here?)}$
at the difference of the second	$\left(\frac{\sqrt{3}}{2}\right)\left(\frac{\sqrt{2}}{2}\right) + \left(\frac{1}{2}\right)\left(\frac{\sqrt{2}}{2}\right)$
For example, because $\frac{1}{1\pi} = \frac{3\pi}{2\pi} - \frac{2\pi}{2\pi}$, use $\pi - \pi$.	$= \frac{(1)(\sqrt{2})}{(\frac{1}{2})(\sqrt{2})} = (\sqrt{3})(\sqrt{2})$
$\sin \frac{\pi}{12} = \sin \left(\frac{\pi}{4} - \frac{\pi}{6}\right)$ The special angles $\frac{\pi}{2}$ and $\frac{\pi}{4}$ could also	(2)(2) (2)(2) √6 √2
$= \sin \frac{\pi}{2} \cos \frac{\pi}{2} = \cos \frac{\pi}{2} \sin \frac{\pi}{2} = \cos \frac{\pi}{2}$	$=\frac{4}{m}$
4 6 4 m 6 = sin A cos B - cos A sin g.	$\frac{v_{a}}{4} - \frac{v_{b}}{4}$
$= \frac{ \frac{1}{2} }{ \frac{1}{2} } - \frac{ \frac{1}{2} }{ \frac{1}{2} }$	$= \left(\frac{\sqrt{6} + \sqrt{2}}{4}\right)\left(\frac{4}{\sqrt{6} - \sqrt{2}}\right)$
$=\frac{1}{4}-\frac{1}{4}$	(w 1/w 2 - v6)
$=\frac{\sqrt{6}-\sqrt{2}}{4}$ How could you write this answer with	$= \frac{1}{\sqrt{2} - \sqrt{6}}$ How could you workly that this is the same allower as in
b) Method 1: Use 4, port	Your Turn
Rewrite tan 105° as a difference of second langest	Um a men or differences idea to a final a
tan 105" = tan (135" - 30") Are there oper ways of writing 105" as the	a) cus 105"
Wes or difference of two special anglesy	b) tan 12
Use the tangent difference identity, $t_{an} (A - B) \equiv \frac{tan A - tan B}{1 + tan B}$	
$\tan (135^{\circ} - 30^{\circ}) = \frac{\tan 135^{\circ} - \tan 30^{\circ}}{1 + \tan 135^{\circ} \tan 30^{\circ}}$ $i + \tan A \ln B$	Key Ideas
$= \frac{-1 - \frac{1}{\sqrt{3}}}{\sqrt{3}}$	 You can use the sum and difference identities to simplify expressions and to
$1 + (-1)\left(\frac{1}{\sqrt{n}}\right)$	unverning exact trigonometric values for some angles.
-1 - 1	Sum Identities Difference Identities
=	sin (A + B) = sin A cos B + cos A sin B $sin (A - B) = sin A cos B - cos A sin B$
$1 - \frac{1}{\sqrt{3}}$	$\cos (A + B) = \cos A \cos B - \sin A \sin B$ $\cos (A - B) = \cos A \cos B + \sin A \sin B$
(-1 - 1)	$\tan (A + B) = \frac{\tan A - \tan B}{1 - \tan A \tan B} \tan (A - B) = \frac{\tan A - \tan B}{1 - \tan B}$
=	 The double-angle identities are special cases of the sum identities when the
$\left(1 - \frac{1}{\sqrt{3}}\right)^{(-\sqrt{3})} = 0^{(-\sqrt{3})}$	in three forms when the head
$=\frac{\sqrt{3}+1}{1}$ How could you refiguralize the	Durable 4 ± 1.1 ± 1.1
1 – V3 denominator?	in 74 - 7 - 1
	$\cos 2A = \cos^2 A - \sin^2 A \qquad \tan 2A = \frac{2 \tan A}{1 - \tan^2 A}$
	$\cos 2A = 1 - 2 \sin^2 A$
• Chapter 6	
	6.2 Sum, Difference, and Double-Angle Identities • MHR Box

• Each Example is followed by a

Your Turn. The Your Turn allows you to explore your understanding of the skills covered in the Example.

• After all the Examples are presented, the **Key Ideas** summarize the main new concepts.

Check Your Understanding

- **Practise:** These questions allow you to check your understanding of the concepts. You can often do the first few questions by checking the Link the Ideas notes or by following one of the worked Examples.
- **Apply:** These questions ask you to apply what you have learned to solve problems. You can choose your own methods of solving a variety of problem types.
- **Extend:** These questions may be more challenging. Many connect to other concepts or lessons. They also allow you to choose your own methods of solving a variety of problem types.
- **Create Connections:** These questions focus your thinking on the Key Ideas and also encourage communication. Many of these questions also connect to other subject areas or other topics within mathematics.
- **Mini-Labs**: These questions provide hands-on activities that encourage you to further explore the concept you are learning.

Cyr lease • An explosition function of the form $y = x' \in > 0 \neq 1$. • is increasing for $< < 1$ • has a domain of $ x \leq 2$ • has a simplify for $< < 1$ • has a simplify for $< y \in 1$ • has a simplify for $y > 0$, $y \in 2$ • has a britisecult • has a hirrisecult asymptote at $y = 0$	
$\begin{aligned} & density the optimization of the following sympositic transformation of the following sympositic transfo$	

Other Features

Key Terms are listed on the Chapter Opener pages. You may already know the meaning of some of them. If not, watch for these terms the first time they are used in the chapter. The meaning is given in the margin. Many definitions include visuals that help clarify the term.

Some **Did You Know?** boxes provide additional information about the meaning of words that are not Key Terms. Other boxes contain interesting facts related to the math you are learning.

Opportunities are provided to use a variety of **Technology** tools. You can use technology to explore patterns and relationships, test predictions, and solve problems. A technology approach is usually provided as only one of a variety of approaches and tools to be used to help you develop your understanding.

Web Links provide Internet information related to some topics. Log on to www.mcgrawhill.ca/school/ learningcentres and you will be able to link to recommended Web sites.

Did You Know?

The SI unit used to measure radioactivity is the becquerel (Bq), which is one particle emitted per second from a radioactive source. Commonly used multiples are kilobecquerel (kBq), for 10³ Bq, and megabecquerel (MBq), for 10⁶ Bq.

Web Link

To learn more about a career in radiology, go to www.mcgrawhill.ca/school/learningcentres and follow the links.

A **Chapter Review** and a **Practice Test** appear at the end of each chapter. The review is organized by section number so you can look back if you need help with a question. The test includes multiple choice, short answer, and extended response questions.

A **Cumulative Review** and a **Unit Test** appear at the end of each unit. The review is organized by chapter. The test includes multiple choice, numerical response, and written response questions.

Answers are provided for the Practise, Apply, Extend, Create Connections, Chapter Review, Practice Test, Cumulative Review, and Unit Test questions. Sample answers are provided for questions that have a variety of possible answers or that involve communication. If you need help with a question like this, read the sample and then try to give an alternative response.

Refer to the illustrated **Glossary** at the back of the student resource if you need to check the exact meaning of mathematical terms.

If you want to find a particular math topic in *Pre-Calculus 12*, look it up in the **Index**, which is at the back of the student resource. The index provides page references that may help you review that topic.